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ABSTRACT 

 

Corneal ulcer is a common-occurring illness in cornea. It is a 

challenge to segment corneal ulcer in slit-lamp image due to the 

different sizes and shapes of point-flaky mixed corneal ulcer and 

flaky corneal ulcer. These differences introduce inconsistency and 

effect the prediction accuracy. To address this problem, we 

propose a corneal ulcer segmentation network (CU-SegNet) to 

segment corneal ulcer in fluorescein staining image. In CU-SegNet, 

the encoder-decoder structure is adopted as main framework, and 

two novel modules including multi-scale global pyramid feature 

aggregation (MGPA) module and multi-scale adaptive-aware 

deformation (MAD) module are proposed and embedded into the 

skip connection and the top of encoder path, respectively. MGPA 

helps high-level features supplement local high-resolution 

semantic information, while MAD can guide the network to focus 

on multi-scale deformation features and adaptively aggregate 

contextual information. The proposed network is evaluated on the 

public SUSTech-SYSU dataset. The Dice coefficient of the 

proposed method is 89.14%. 

 

Index Terms—Slit-lamp image, Corneal ulcer, Image 

segmentation, Deep learning 

 

1. INTRODUCTION 

 

Cornea is a transparent membrane in the front of the eye. It is 

extensively exposed to the air and more likely to be infected with 

bacteria, which may lead to ophthalmic symptoms such as corneal 

ulcer. A corneal ulcer is an inflammatory or more seriously, 

infective condition of the cornea involving disruption of its 

epithelial layer with involvement of the corneal stroma [1]. 

According to the shape and distribution characteristics, corneal 

ulcer can be classified into three categories: point-like corneal 

ulcer, point-flaky mixed corneal ulcer and flaky corneal ulcer. 

Fluorescein staining and slit-lamp imaging are widely used for 

corneal disease diagnosis in clinic. Automatic and accurate corneal 

ulcer detection and segmentation in fluorescein staining slit-lamp 

images could help the ophthalmologists to diagnose corneal ulcer 

at its early stage and reduce the risk of blindness.  

In the past decade, there are several corneal ulcer detection 

and segmentation methods [2][3][4]. L. Deng et al presented an 

automatic ulcer segmentation method by utilizing k-means 

clustering followed by morphological operations and region 

growing [2]. Z. Liu et al segmented the ulcer area within the 

cornea by employing a joint method of Otsu and Gaussian mixture 

modeling (GMM) with 150 images [3]. Q. Sun et al proposed a 

patch-based deep convolutional neural network for corneal ulcer 

area segmentation with 48 images [4].  

U-Net [5] and its variants have been widely used in medical 

image segmentation due to its good performance. However, the 

original U-shape encoder-decoder structure still suffers from the 

insufficiency of the contextual information extraction capability, 

which is important for the lesion area segmentation with different 

sizes and shapes. To address this problem, we propose a novel CU-

SegNet based on commonly used U-shape architecture for corneal 

ulcer area segmentation. Our main contributions are as follows: 

1) To reduce the impact of large differences in morphology 

and size of lesions, two novel modules including multi-scale global 

pyramid feature aggregation (MGPA) module, which can improve 

the network’s ability to learn to supplement low-level local high-

resolution semantic information to high-level feature maps, and 

multi-scale adaptive-aware deformation (MAD) module, which 

guides the model to focus on multi-scale deformation of the targets 

and aggregates the contextual information, are proposed. 

2) Comprehensive experiments are conducted based on 

SUSTech-SYSU dataset to demonstrate the effectiveness of our 

proposed method. The experimental results show that our proposed 

CU-SegNet achieves better segmentation performance compared 

with other excellent methods. 

 

2. METHODOLOGY DEVELOPED 

 

The overview of the proposed CU-SegNet is shown in Fig. 1. The 

commonly used U-shape encoder-decoder structure is adopted as 

our main framework, where the pretrained ResNet-34 [6] is 

employed as the encoder path to extract rich feature information 

from the input image. The novel proposed MAD module is 

embedded into the top of encoder path to guide the model to focus 

on the multi-scale deformation maps and aggregate the contextual 

information. The proposed MGPA module is embedded into the 

skip connection to supplement low-level local high-resolution 

semantic information to high-level feature maps. 

 

2.1. Multi-scale Adaptive-aware Deformation Module 

 

As can be seen form Figure 1, the proposed MAD module is 

embedded at the top of the encoder path. Figure 2 shows its 

structure, which contains 4 parts: parallel and deformable 

convolution module, multiple global spatial attention module, 

multiple global channel attention module and adaptive residual 

module. 



 
 

Fig. 1. Overview of the proposed network and the MGPA module. 

 

2.1.1. Parallel and Deformable Convolution Module 

In parallel and deformable convolution module, the multi-receptive 

field convolutional operation is stacked by parallel. It has four 

convolutional branches and one deformable convolution. First, 

four convolutional branches are used to squeeze the channels to 

reduce the cost of calculation by 1×1 convolution. Then 3×3 

convolution and dilation convolution with rate 1, 3, 5, and 7 are 

followed to get the respective field size of 3, 11, 19 and 27, 

respectively. Next, these feature maps are concatenated and fed 

into a deformable convolution [7], which can augment the spatial 

sampling locations in the modules by additional offsets of kernel 

size in horizontal and vertical direction. Finally, the output feature 

maps are fed into the parallel-linked multiple global spatial 

attention module and the multiple global channel attention module. 

 

2.1.2. Multiple Global Spatial Attention Module 

Max-pooling can extract the most significant spatial response 

information in each channel of the feature maps. However, it may 

also introduce noise due to the different sizes and shapes of lesion. 

Meanwhile, average-pooling can represent the average of all 

channels in the corresponding position in the input feature maps. 

Although this approach can suppress some of the noise 

interference in the channels, it also suppresses the most significant 

spatial response information in all channels. Therefore, to get the 

most significant spatial response information in all channels and 

suppress noise interference, 2D average-pooling and max-pooling 

are performed simultaneously in multiple global spatial attention 

module. The feature maps are fed to the maximum map branch (h × 

w) and the mean map branch (h × w) in parallel. A convolutional 

operation to squeeze the channel of concatenated maps (2 × h × w) 

is followed. Finally, Sigmoid function is adopted to normalize the 

value of attention matrix to 0~1 (h × w). The contextual 

information in spatial dimension of original feature maps can be 

obtained. At the same time, the interference of noise can also be 

suppressed by this module. 

 

2.1.3. Multiple Global Channel Attention Module 

Multiple global channel attention module is similar to multiple 

global spatial attention module. The feature maps are firstly fed 

into two parallel branches to calculate the maximum and mean 

value of each feature map in all channels respectively. Then global 

channel maximum value maps (c×1×1) and global channel mean 

value maps (c×1×1) are concatenated and followed by a 

convolution layer to smooth and squeeze the feature maps. Finally, 

the results are reshaped (c×1) and fed into a fully connection layer 

followed by sigmoid function to obtain the weights of each feature 

map. This module can get the response of each feature map in all 

channels and suppress noise interference. 

 

2.1.4. Adaptive Residual Module 

The result of deformable convolution (X1) multiplies feature maps 

from multiple global spatial attention module (X2) and the multiple 

global channel attention module (X3) by coefficients respectively. 

They are added together. Then the feature maps are smoothed by 

convolution. The learnable parameters γ and λ are initialized as a 

non-zero value (1.0 in this paper). The process can be summarized 

as: 

Output = Conv (X1 +  γ X1 X3  +  λ X1X2).               (1) 

Finally, we directly add the smoothed feature maps with the 

original feature maps to construct the residual mechanism. 

 

2.2. Multi-scale Global Pyramid Feature Aggregation Module 

 

The original skip-connection in the U-shape network will 

introduce irrelevant clutters and have semantic gap. To solve this 

problem, the MGPA module is designed and embedded into the 

skip connection to supplement low-level local high-resolution 

semantic information to high-level feature maps. In the MGPA 

module, the feature maps of current stage F2 (C2×H2×W2) and the 

low-level stage F1 (C1×H1×W1) are taken as input. First, F1 maps 

are fed into max pooling layers with size 2, 3 and 6 to capture 

targets with different sizes and shapes, which is followed by a 1×1 

convolution layer. Then they are upsampled to the same size as the 

current stage feature maps via bilinear interpolation. 

At the same time, F1 maps are fed into a 1×1 convolution 

layer and resized to the size of F2 to add more semantic 

information, individually. All of them are concatenated with the 

current stage feature maps F2. Finally, the concatenated feature 

map ((4C1+C2 )×H2×W2) is fed into squeeze-and-excitation (SE) 

module [8], followed by 1×1 convolution layer to match the 

channel number of decoder stage. By this module, the low-level 

local high-resolution semantic information is supplemented to 

high-level feature maps. 

3. EXPERIMENTS AND RESULTS 

 

3.1. Dataset and implementation details 

 

We evaluate our network on a public slit-lamp fluorescein staining 

image dataset, the SUSTech-SYSU dataset, which is created to 

evaluate automatic corneal the ulcer segmentation algorithms and 

identify the general and specific ulcer patterns as well as the ulcer 

severity degree [9]. The dataset has 354 images with corneal ulcer, 

among which 263 are labeled as point-flaky mixed corneal ulcer 

and the other 91 are labeled as flaky corneal ulcer. The size of each 

RGB image is 2592 × 1728. The original images and labels are 

resized to 512×512 by bilinear interpolation in order to achieve the 

balance between computational efficiency and accuracy of 

prediction. 4-fold cross-validation strategy (90, 90, 90 and 84) is 

adopted.  In order to avoid over-fitting and improve the robust 

ability of model, online data augmentation has performed, 

including rotations of -10 degrees to 10 degrees, horizontal 

flipping, vertical flipping, Gaussian noise addition and affine 

transformation. 



 

Fig.2. The MAD module with 4 parts: parallel and deformable convolution module, multiple global spatial attention module, multiple 

global channel attention module and adaptive residual module. 

 

Fig.3. The examples of corneal ulcer segmentation. From left to right: original image, ground truth (GT), U-Net, R2U-Net, CE-Net, 

Attention U-Net, Backbone, and proposed method. 

TABLE Ⅰ. The result of contrast experiments and ablation studies (mean ± standard deviation) 

        Methods       Dice (%) SEN (%) SPE (%) PCC (%) 

U-Net 87.28±5.38 88.54±3.71 99.64±0.14 87.40±5.23 

AttU-Net 86.40±6.17 88.05±3.28 99.62±0.15 86.59±6.03 

R2U-Net 80.76±9.26 82.56±5.78 99.47±0.29 81.29±8.67 

CE-Net 88.43±4.81 88.45±4.31 99.73±0.08 88.48±4.53 

DeepLabv3+ 88.29±5.41 89.19±4.90 99.69±0.10 88.33±5.27 

PSPNet 89.09±4.64 90.20±3.34 99.70±0.10 89.08±4.56 

backbone 87.71±5.54 88.53±4.03 99.70±0.11 88.00±5.29 

backbone +MAD 88.82±4.51 88.99±3.17 99.73±0.10 88.82±4.44 

backbone +MGPA 88.91±4.32 89.96±3.12 99.70±0.09 88.93±4.26 

U-Net+MAD 88.70±4.39 89.21±2.87 99.65±0.17 88.13±4.39 

U-Net+MGPA 87.93±4.27 88.35±3.54 99.69±0.12 87.98±4.14 

Proposed 89.14±4.59 89.65±4.06 99.70±0.13 89.16±4.51 

 

Cross-entropy loss and Dice loss are jointly used as the loss 

function to train the proposed network. The proposed network is 

performed on the public platform pytorch and a Tesla K40 GPU 

(12GB). Adam is used as the optimizer. Initial learning rate is set 

to 0.0005, and weight decay is set to 0.0001. The batch size is set 

as 4 and epoch is 100. 

 

3.2. Results 



 

4 metrics including Dice coefficient (Dice), sensitivity (SEN), 

specificity (SPE) and Pearson’s correlation coefficient (PCC) are 

adopted to evaluate the corneal ulcer segmentation performance of 

different methods. The proposed method is compared with other 

excellent methods including U-Net, Attention U-Net [10], R2U-

Net [11], CE-Net [12], PSPNet [13] and DeepLabv3+ [14]. All 

networks are trained with same parameters. 

As shown in Table Ⅰ and Fig. 3, the proposed method 

outperforms other networks. Compared with the result of backbone, 

the proposed method achieves an increase of 1.43% in Dice 

coefficient, which indicates the effectiveness of the proposed MAD 

and MGPA module. The ablation experiments both the backbone 

and U-Net with MAD and MGPA modules further show the 

effectiveness and generality of these two modules. 

 

4. CONCLUSION 

 

In this paper, we propose a novel CU-SegNet to segment corneal 

ulcer in fluorescein staining slit-lamp image automatically, which 

can improve the segmentation performance of the corneal ulcer 

area with different scales and shapes. The proposed CU-SegNet is 

evaluated on the recently published public SUSTech-SYSU dataset. 

The comparison and ablation experiments indicate the primary 

effectiveness of two proposed module. In the experiments, we also 

find that the point-flaky mixed corneal ulcer is not segmented 

accurately enough because of the great intra-eye and inter-eye 

differences of size and shape, which will be focused and settled in 

our near future work. 
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